Show that in an arithmetical progression a1,a2,a3,________, S=a21−a22+a23−a24+________a22k =k2k−1(a21−a22k).
Open in App
Solution
a21−a22=(a1−a2)(a1+a2)=−d(a1+a2) Similarly for each of k brackets formed out of 2k given terms. ∴S=−dS2k=−d⋅2k2[a1+a2k] =−dk[a21−a22ka1−a2k]=−dk(a21−a22k)a1−{a1+(2k−1)d} =k2k−1(a21−a22k).