wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Show that π/20xsinx+cosxdx=π22ln(2+1)

Open in App
Solution

Let
I=π20xsinx+cosxdx

I=π20xsinx+cosxdx=π20π2xsinx+cosxdx

I=π2π20dxsinx+cosxI

I=π4π20xsinx+cosxdx=π4π20dx2tanx21+tanx2x2+1tanx2x21+tanx2x2

I=π4π20(1+tanx2x2)1+2tanx2tan2x2dx

=π4π20sec2x1+2tanx2tan2x2dx

Lettan2x2=t

sec2x2dx=2dt
So,
limitsx0t0
xπ2t1

I=π4102dt1+2tt2=π2102dt(t12)(t1+2)

=π210122[1t121t12]dt

=π4210dt(t12)+π4210dt(t1+2)

=π42[ln(t12)]10+π42[ln(t1+2)]10

=π42[ln2ln(1+2)]+[ln2ln(21)]

=π42[ln2+ln2+ln(1+2)ln(21)]

=π42ln(1+2)(21)

=π42ln(1+2)2

=π22ln(2+1)
Hence, the following question shown.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon