Let
I=∫π20xsinx+cosxdx
I=∫π20xsinx+cosxdx=∫π20π2−xsinx+cosxdx
⇒I=π2∫π20dxsinx+cosx−I
⇒I=π4∫π20xsinx+cosxdx=π4∫π20dx2tanx21+tanx2x2+1−tanx2x21+tanx2x2
⇒I=π4∫π20(1+tanx2x2)1+2tanx2−tan2x2dx
=π4∫π20sec2x1+2tanx2−tan2x2dx
Lettan2x2=t
⇒sec2x2dx=2dt
So,
limitsx→0⇒t→0
x→π2⇒t→1
I=π4∫102dt1+2t−t2=−π2∫102dt(t−1−√2)(t−1+√2)
=−π2∫1012√2[1t−1−√2−1t−1−√2]dt
=−π4√2∫10dt(t−1−√2)+−π4√2∫10dt(t−1+√2)
=−π4√2[ln∣∣(t−1−√2)∣∣]10+π4√2[ln∣∣(t−1+√2)∣∣]10
=π4√2[ln√2−ln(1+√2)]+[ln√2−ln(√2−1)]
=π4√2[ln√2+ln√2+ln(1+√2)−ln(√2−1)]
=π4√2ln(1+√2)(√2−1)
=π4√2ln(1+√2)2
=π2√2ln(√2+1)
Hence, the following question shown.