Show that ∫2x−12x+3dx=x−log|(2x+3)2| + C
∫2x−12x+3dx=x−log|(2x+3)2+CLetI=∫2x−12x+3dx=∫2x+3−3−12x+3dx=∫1dx−4∫12x+3dx=x−∫42(x+32)dx=x−2 log+|(x+32)|C′=x−2 log(2x+32)|+C′x−2 log(2x+3)|+2 log2+C′[∵logmn=log m−log n]=x−log|(2x+3)2|+C
∫2x−1(x−1)(x+2)(x−3)dx