Show that ∫2x+3x2+3xdx=log∣∣x2+3x∣∣+C
Let I=∫2x+3x2+3xdxPut x2+3x=t⇒(2x+3)dx=dt∴I=∫1tdt=log|t|+C=log|(x2+3x)|+C
Show that f(x)=2x+cot−1x+log(√1+x2−x) is increasing in R.