I=π/2∫0f(sin2x)sinx dx ..........(1)
I=π/2∫0f[sin2(π2−x)]sin(π2−x)dx (b∫af(x) dx=b∫af(a+b−x) dx)
I=π/2∫0f[sin(π−2x)]cosx dx
I=π/2∫0f(sin2x)cosx dx ........(2)
On adding equation 1 and 2, we get,
2I=π/2∫0f(sin2x).(sinx+cosx) dx
2I=2π/4∫0f(sin2x).(sinx+cosx) dx (2a∫0f(x) dx=a∫02f(x) dx,if f(2a−x)=f(x))
2I=2√2π/4∫0f(sin2x)(1√2sinx+1√2cosx)dx
2I=2√2π/4∫0f(sin2x)sin(x+π4)dx
2I=2√2π/4∫0f[sin2(π4−x)]sin(π4−x+π4)dx
2I=2√2π/4∫0f[sin(π2−2x)]sin(π2−x)dx
2I=2√2π/4∫0f(cos2x)cosxdx
I=√2π/4∫0f(cos2x)cosxdx
Hence, proved.