wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that π/20f(sin2x)sinx dx=2π/40f(cos2x) cosx dx.

Open in App
Solution

I=π/20f(sin2x)sinx dx ..........(1)

I=π/20f[sin2(π2x)]sin(π2x)dx (baf(x) dx=baf(a+bx) dx)

I=π/20f[sin(π2x)]cosx dx

I=π/20f(sin2x)cosx dx ........(2)

On adding equation 1 and 2, we get,
2I=π/20f(sin2x).(sinx+cosx) dx

2I=2π/40f(sin2x).(sinx+cosx) dx (2a0f(x) dx=a02f(x) dx,if f(2ax)=f(x))

2I=22π/40f(sin2x)(12sinx+12cosx)dx

2I=22π/40f(sin2x)sin(x+π4)dx

2I=22π/40f[sin2(π4x)]sin(π4x+π4)dx

2I=22π/40f[sin(π22x)]sin(π2x)dx

2I=22π/40f(cos2x)cosxdx

I=2π/40f(cos2x)cosxdx

Hence, proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon