(1+cotA+tanA)(sinA−cosA)
=sinA+sinAcotA+sinAtanA−cosA−cosAcotA−cosAtanA
=sinA+sinA×cosAsinA+sinA×sinAcosA−cosA−cosA×cosAsinA−cosA×sinAcosA
=sinA+cosA+sinAtanA−cosA−cotAcosA−sinA
=sinAtanA−cotAcosA ....... (1)
Now, sinAtanA−cotAcosA
=sinA×sinAcosA−cosAsinA×cosA
=sin2AsecA−cos2A cosec A
=1cosec2A×secA−1sec2A×cosec A
=secAcosec2A−cosec Asec2A ...... (2)
From (1) and (2),
(1+cotA+tanA)(sinA−cosA) =secAcosec2A−cosec Asec2A=sinAtanA−cotAcosA