∣∣
∣
∣∣111abca2b2c2∣∣
∣
∣∣=(a−b)(b−c)(c−a)
Solving determinant, we have
∣∣
∣
∣∣111abca2b2c2∣∣
∣
∣∣
Applying C2→C2−C1 and C3→C3−C1
=∣∣
∣
∣∣100ab−ac−aa2b2−a2c2−a2∣∣
∣
∣∣
Taking (c−a) and (b−a) as common from C3 and C2 respectively.
=(b−a)(c−a)∣∣
∣∣100a11a2b+ac+a∣∣
∣∣
Expanding the determinant along R1, we have
=(b−a)(c−a)(1(c+a−b−a)−0+0)
=(b−a)(c−a)(c−b)
=(a−b)(b−c)(c−a)
= R.H.S.
Hence proved.A