wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that
(xa2xb2)1a+b×(xb2xc2)1b+c×(xc2xa2)1c+a=1

Open in App
Solution

LHS=(xa2xb2)1a+b×(xb2xc2)1b+c×(xc2xa2)1c+a[since,xmxn=xmn]=(xa2b2)1a+b×(xb2c2)1b+c×(xc2a2)1c+a=(x)a2b2a+b×(x)b2c2b+c×(x)c2a2c+a=(x)(ab)(a+b)(a+b)×(x)(bc)(b+c)(b+c)×(x)(c+a)(ca)(c+a)=(x)(ab)×(x)(bc)×(x)(ca)=(x)(ab)+(bc)+(ca)=1=RHS

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Exponents
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon