Show that ∣∣z−2z−3∣∣=2 represents a circle. Also, find its centre and radius.
Or
If arg (z - 1) = arg (z + 3 i), find (x - 1) : y, where z = x + iy.
Let z = x + iy
Given equation is ∣∣z−2z−3∣∣=2 ⇒ ∣∣x+iy−2x+iy−3∣∣=2
⇒ |x+iy−2|=2|x+iy−3|
⇒ |(x−2)+iy|=2|(x−3)+iy|
⇒ √(x−2)2+y2=2√(x−3)2+y2
⇒ (x−2)2+y2=4[(x−3)2+y2] [squaring both sides]
⇒ x2−4x+4+y2=4(x2−6x+9+y2)
⇒ 3x2+3y2−20x+32=0
∴ x2+y2−203x+323=0
This represents a equation of circle and its centre is (103,0)
and radius =√(103)2−323=√1009−323
[∵ r=√g2+f2−c]
=√100−969=23 units
Or
Given that, arg (z-1) = arg (z + 3i)
⇒ arg (x + iy - 1) = arg (x + iy + 3i) [∵ z = x + iy]
⇒ arg (x - 1 + iy) = arg [x + i(y + 3)]
⇒ tan−1(yx−1)=tan−1(y+3x)
[∵ arg(x+iy)=tan−1yx]
⇒ y(x−1)=(y+3)x⇒ xy=(x−1)(y+3)
⇒ xy=xy+3x−y−3⇒ 3x−3=y
⇒ x−1y=13
∴ x−1:y=1:3