Show that limx→0e−1x does not exist.
limx→0e−1x
Now,
limx→0+e−1x=limx→0+1e1x
Put x=0+h⇒h=x
as x→0+⇒x>0 slightly
⇒h>0⇒h>0+
=limh→0+1e10+h=1e10=1∞=0
And,
limx→0−e−1ex=limx→0−1e1x
Put x=0−h⇒h=−x
as x→0−⇒x<0 slightly
⇒−x>0⇒h>0
⇒h→0+
=limh→0+1e10−h=limh→0+1e−1h
1e−10=1e−∞=e∞=∞
⇒limx→0+e−1x≠limx→0−e−1x
∴limx→0−e−1x does not exist.