Show that limx→0x|x| does not exist.
LHL=limx→0x|x|
limx→0(x−x)
[∵asx→0−,x<0slightly⇒|x|=−x]
=-1
RHL=limx→0(x)|x|
limx→0(xx)
[∵asx→0+,x>0slightly⇒|x|=x]
=1
Since, LHL≠RHL
⇒limx→0x|x| does not exist.
Show that limx→0e−1x does not exist.