Show that limx→2−x[x]≠limx→2+x[x].
limx→2−x[x]
Let x =2-h
h =2-x
as x→2−⇒x<2 slightly
⇒2−x>0
⇒h>0⇒4→0+
=limh→0+2−h[2−h]
=limh→0+2−h1=limh→0+(2−h)=2
Now limx→2+x(x)
Let x=2+h⇒h=x−2
as x→2+⇒x>2 slightly
⇒x−2>0
⇒h>0+
=limh→0+2+h[2+h]=limh→0+2+h2
=2+02=1