Show that points P(1,–2),Q(5,2),R(3,–1),S(–1,–5) are the vertices of a parallelogram
The given points are P(1,–2),Q(5,2),R(3,–1),S(–1,–5)
Slope of PQ=2+25−1=44=1
Slope of QR=−1−23−5=−3−2=32
Slope of RS=−5+1−1−3=−4−4=1
Slope of PS=−5+2−1−1=−3−2=32
Slope of PQ=Slope of RS and Slope of QR= Slope of PS
So, PQ||RS and QR||PS
Thus, PQRS is a parallelogram.