Show that: secA(1-sinA)(secA+tanA)=1
Prove that secA(1-sinA)(secA+tanA)=1
Let us consider LHS, first;
L.H.S=secA(1-sinA)(secA+tanA)
=(1-sinA)cosA1cosA+sinAcosA ∵secA=1cosA and tanA=sinAcosA
=(1-sinA)cosA1+sinAcosA
=1-sin2Acos2A ∵a+ba-b=a2-b2
=cos2Acos2A ∵1-sin2A=cos2A
=1
∴L.H.S=R.H.S
Thus,secA(1-sinA)(secA+tanA)=1
Hence Proved