wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that semi-vertical angle of a cone of maximum volume and given slant height is cos1[13].

Open in App
Solution

Let θ be the semi vertical angle, l be the given slant height, then radius of base =l sin θ and height=l cos θ

V=13π(l sin θ)2(l cos θ),(V=13πr2h)

=13πl3 sin2 θ cos θ

dVdθ=π3l3[2 sin θ cos2 θ+sin2 θ(sin θ)]

=π3l3 sin θ[(1cos2 θ)+2cos2θ]

=π3l3 sin θ(3 cos2 θ1)

For maximum volume, differentiating volume w.r.t. θ,
dVd θ=0

3 cos2 θ1=0
cos θ=13
θ=cos1(13)

d2Vd θ2=π3l3[cos θ(3 cos2 θ1)+sin θ (6 cos θ)(sin θ)]

=π3l3[3 cos3 θcos θ6 cos θ(1cos2 θ)]

=π3l3(9 cos3 θ7 cos θ)

=π3l3(cos θ)(9 cos2 θ7)

When cos θ=13, then
d2Vd θ2=π3l3(13)×(37)<0

When θ=cos1(13),given volume is maximum
V is absolutely maximum for θ=cos1(13).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Wildlife Conservation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon