The surface area of the cone will be
S=πr2+πrl, where
r is the radius and
l is the slant height of the cone.
⇒l=S−πr2πr
Also, we know that h2+r2=l2, where h is the verical height of the cone.
⇒h2+r2=(S−πr2πr)2
⇒h2 =S2+π2r4−2πSr2π2r2−r2=S2+π2r4−2πSr2−π2r4π2r2=S2−2πSr2π2r2
⇒h=√S2−2πSr2πr
Now, volume of the cone V =13πr2h=13πr2√S2−2πSr2πr=r3√S2−2πSr2
For maximum volume, dVdr=0
⇒√S2−2πSr23+r3−4πSr2√S2−2πSr2=0
⇒S2−2πSr23=2πSr23
⇒S2=4πSr2
Since, S≠0, we have
S=4πr2
Now, l=S−πr2πr=4πr2−πr2πr=3r
Let α be the semi-vertical angle of the cone.
Then sinα=rl=r3r=13
∴α=sin−1(13)