Show that set of all points such that the difference of their distance from (4,0), and (-4,0) is always equal to 2 represents a hyperbola.
Let P(x,y)be a point of the set.
Distance of P(x,y)from (4,0)
=√(x−4)2+y2
Distance P(x,y) from (−4,0)
=√(x+4)2+y2
Difference between distance=2
=√(x−4)2+y2−=√(x+4)2+y2
=√(x−4)2+y2−=2+√(x+4)2+y2
Squaring both sides,we get
(x−4)2+y2=4+4=√(x+4)2+y2+(x+4)2+y2
(x−4)2+y2−(x+4)2−y2=4+4√(x+4)2+y2
(x−4−x−4)(x−4+x+4)
=4+4√(x+4)2+y2 \
(-16x-4=4\sqrt{(x+4)^2+y^2}\)
−4x−1=√(x+4)2+y2
Squaring both sides,we get
16x2+8x+1=x2+8x+16+y2 15x2−y2=15 This is hyperbola.