Show that sin−1513+cos−135=tan−16316.
We have, sin−1513+cos−135=tan−16316.
Let sin−1513=x⇒ sin x=513and cos2 x=1−sin2 x=1−25169=144169⇒ cos x=√144169=1213∴ tan x=sin xcos x=5/1312/13=512 ⋯(ii)⇒ tan x=5/12 ⋯(iii)
Again,let cos−135=y ⇒ cos y=35∴ sin y=√1−cos2 y=√1−(35)2=√1−925sin y=√1625=45⇒ tan y=sin ycos y=4/53/5=43
We know that,
tan(x+y)=tan x+tan y1−tan x.tan y
⇒ tan(x+y)=512+431−512.43 ⇒ tan(x+y)=15+483636−2036⇒ tan(x+y)=63/3616/36⇒ tan(x+y)=6316⇒ x+y=tan−16316⇒ tan−1512+tan−143=tan−16316 Hence proved.