wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that:
sin1(1213)+cos1(45)+tan1(6316)=π.

Open in App
Solution

Let x=sin1(1213), then sinx=1213.

cosx=1sin2x

cosx=1(1213)2

cosx=513

tanx=sinxcosx

tanx=1213513

tanx=125

x=tan1(125)

So, sin1(1213)=tan1(125)

Similarly,cos1(45)=tan1(34)

Substitute these values in the left hand side of sin1(1213)+cos1(45)+tan1(6316)=π.

=tan1(125)+tan1(34)+tan1(6316)

As 125×34=95>1, so, tan1A+tan1B=π+tan1(A+B1AB).

=π+tan1⎜ ⎜ ⎜125+341125×34⎟ ⎟ ⎟+tan1(6316)

=π+tan1(6316)+tan1(6316)

=πtan1(6316)+tan1(6316)

=π

=RHS

Hence LHS=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon