Let x=sin−1(1213), then sinx=1213.
cosx=√1−sin2x
cosx=√1−(1213)2
cosx=513
tanx=sinxcosx
tanx=1213513
tanx=125
x=tan−1(125)
So, sin−1(1213)=tan−1(125)
Similarly,cos−1(45)=tan−1(34)
Substitute these values in the left hand side of sin−1(1213)+cos−1(45)+tan−1(6316)=π.
=tan−1(125)+tan−1(34)+tan−1(6316)
As 125×34=95>1, so, tan−1A+tan−1B=π+tan−1(A+B1−AB).
=π+tan−1⎛⎜ ⎜ ⎜⎝125+341−125×34⎞⎟ ⎟ ⎟⎠+tan−1(6316)
=π+tan−1(−6316)+tan−1(6316)
=π−tan−1(6316)+tan−1(6316)
=π
=RHS
Hence LHS=RHS