wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that: sinA(secA+tanA-1)+cosA(cosecA+cotA-1)=1.


Open in App
Solution

To prove :

sinA(secA+tanA-1)+cosA(cosecA+cotA-1)=1

L.H.S=sinA(secA+tanA-1)+cosA(cosecA+cotA-1)

Let us express secA, cosecAand cotAin terms of sinA and cosA, we get

=sinA1cosA+sinAcosA–1+cosA1sinA+cosAsinA–1

=sinA1+sinAcosA–1+cosA1+cosAsinA–1

=sinA1+sinA-cosAcosA+cosA1+cosA-sinAsinA

=sinAcosA1+sinA-cosA+cosAsinA1+cosA-sinA

=sinAcosA1+(sinA-cosA)+cosAsinA1-(sinA-cosA) [Taking negative sign common from(cosA-sinA) term of the denominator of the second fraction]

=sinAcosA1-(sinA-cosA)+cosAsinA1+(sinA-cosA)12-(sinA-cosA)2 ∵a2-b2=(a+b)(a-b)

=sinAcosA-sin2AcosA+sinAcos2A+cosAsinA+cosAsin2A-cos2AsinA12-sin2A+cos2A-2sinAcosA (like terms with opposite sign cancel each other)

=2sinAcosA1-1+2sinAcosA [∵sin2A+cos2A=1]

=2sinAcosA2sinAcosA

=1

=R.H.S

∵L.H.S=R.H.S

∴sinA(secA+tanA-1)+cosA(cosecA+cotA-1)=1

Hence, proved.


flag
Suggest Corrections
thumbs-up
18
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon