Show that: sinA(secA+tanA-1)+cosA(cosecA+cotA-1)=1.
To prove :
sinA(secA+tanA-1)+cosA(cosecA+cotA-1)=1
L.H.S=sinA(secA+tanA-1)+cosA(cosecA+cotA-1)
Let us express secA, cosecAand cotAin terms of sinA and cosA, we get
=sinA1cosA+sinAcosA–1+cosA1sinA+cosAsinA–1
=sinA1+sinAcosA–1+cosA1+cosAsinA–1
=sinA1+sinA-cosAcosA+cosA1+cosA-sinAsinA
=sinAcosA1+sinA-cosA+cosAsinA1+cosA-sinA
=sinAcosA1+(sinA-cosA)+cosAsinA1-(sinA-cosA) [Taking negative sign common from(cosA-sinA) term of the denominator of the second fraction]
=sinAcosA1-(sinA-cosA)+cosAsinA1+(sinA-cosA)12-(sinA-cosA)2 ∵a2-b2=(a+b)(a-b)
=sinAcosA-sin2AcosA+sinAcos2A+cosAsinA+cosAsin2A-cos2AsinA12-sin2A+cos2A-2sinAcosA (like terms with opposite sign cancel each other)
=2sinAcosA1-1+2sinAcosA [∵sin2A+cos2A=1]
=2sinAcosA2sinAcosA
=1
=R.H.S
∵L.H.S=R.H.S
∴sinA(secA+tanA-1)+cosA(cosecA+cotA-1)=1
Hence, proved.