Show that:
∑a3cos(B−C)=3abc
(or)
Prove that:
a3cos(B−C)+b3cos(C−A)+c3cos(A−B)=3abc
To prove: ∑a3cos(B−C)=a3cos(B−C)+b3cos(C−A)+c3cos(A−B)=3abc
Recall the Sine rule,
asinA=bsinB=csinC=2R
Where, R is the circumradius of the triangle.
⇒a=2RsinA, b=2RsinB and c=2RsinC
Now, lets take LHS and then equate it to RHS.
LHS =∑a3cos(B−C)
=∑a2acos(B−C)
=∑a2(2RsinA)cos(B−C)---(1)
Since, in ΔABC
A+B+C=180∘
⇒A=180∘−(B+C)
⇒sinA=sin(180∘−(B+C))
⇒sinA=sin(B+C)
Now, from (1)
∑a2(2RsinA)cos(B−C)
=∑a2R(2sin(B+C)cos(B−C))
=∑a2R(sin(B+C+B−C)+sin(B+C−B+C))
=∑a2R(sin2B+sin2C)
=∑a2R(2sinBcosB+2sinCcosC)
=∑a2(2RsinBcosB+2RsinCcosC)
=∑a2(bcosB+ccosC)
=∑(a2bcosB+a2ccosC)
By cyclic expansion of a,b and c
Therefore, ∑a3cos(B−C)=3abc
Hence, proved.