wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that:

a3cos(BC)=3abc

(or)

Prove that:

a3cos(BC)+b3cos(CA)+c3cos(AB)=3abc

Open in App
Solution

To prove: a3cos(BC)=a3cos(BC)+b3cos(CA)+c3cos(AB)=3abc

Recall the Sine rule,

asinA=bsinB=csinC=2R

Where, R is the circumradius of the triangle.

a=2RsinA, b=2RsinB and c=2RsinC

Now, lets take LHS and then equate it to RHS.

LHS =a3cos(BC)

=a2acos(BC)

=a2(2RsinA)cos(BC)---(1)

Since, in ΔABC

A+B+C=180

A=180(B+C)

sinA=sin(180(B+C))

sinA=sin(B+C)

Now, from (1)

a2(2RsinA)cos(BC)

=a2R(2sin(B+C)cos(BC))

=a2R(sin(B+C+BC)+sin(B+CB+C))

=a2R(sin2B+sin2C)

=a2R(2sinBcosB+2sinCcosC)

=a2(2RsinBcosB+2RsinCcosC)

=a2(bcosB+ccosC)

=(a2bcosB+a2ccosC)

By cyclic expansion of a,b and c

=a2bcosB+a2ccosC+b2acosA+b2ccosC+c2acosA+c2bcosB
=ab(acosB+bcosA)+ac(acosC+ccosA)+bc(bcosC)ccosB)
=ab(c)+ac(b)+bc(a)
=3abc
= RHS

Therefore, a3cos(BC)=3abc

Hence, proved.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon