L.H.S
=tan−112+tan−1211+tan−143
We know that
tan−1x+tan−1y+tan−1z=tan−1(x+y+z)(1−xy−yz−zx)
Therefore,
=tan−1⎛⎜ ⎜ ⎜⎝12+211+431−12×211−211×43−43×12⎞⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜⎝33+12+88661−111−83×11−23⎞⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜ ⎜⎝133661−(3+8+223×11)⎞⎟ ⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜ ⎜⎝133661−(3333)⎞⎟ ⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜⎝133661−1⎞⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜⎝133660⎞⎟ ⎟ ⎟⎠
=tan−1(∞)
=tan−1(tanπ2)
=π2
Hence, proved.