1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Inverse Trigonometric Functions
Show that t...
Question
Show that
tan
−
1
2
11
+
tan
−
1
7
24
=
tan
−
1
1
2
Open in App
Solution
Formula used:
tan
−
1
x
+
tan
−
1
y
=
tan
−
1
(
x
+
y
1
−
x
y
)
L.H.S
=
tan
−
1
(
2
11
)
+
tan
−
1
(
7
24
)
=
tan
−
1
⎛
⎜ ⎜ ⎜
⎝
2
11
+
7
24
1
−
14
24
×
11
⎞
⎟ ⎟ ⎟
⎠
=
tan
−
1
(
48
+
77
(
24
×
11
)
−
14
)
=
tan
−
1
(
125
250
)
=
tan
−
1
(
1
2
)
=
R.H.S
Hence proved
L.H.S=R.H.S
Suggest Corrections
0
Similar questions
Q.
Prove the followings.
tan
−
1
(
2
11
)
+
tan
−
1
(
7
24
)
=
tan
−
1
(
1
2
)
Q.
Show that
tan
−
1
1
/
2
+
tan
−
1
2
/
11
+
tan
−
1
4
/
3
=
π
/
2
Q.
Show that
2
tan
−
1
1
2
+
tan
−
1
1
7
=
tan
−
1
31
17
.
Q.
tan
−
1
2
11
+
tan
−
1
7
24
=
tan
−
1
1
2
Q.
Prove
tan
−
1
2
11
+
tan
−
1
7
24
=
tan
−
1
1
2
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Explore more
Basic Inverse Trigonometric Functions
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app