Byju's Answer
Standard XI
Mathematics
Sign of Trigonometric Ratios in Different Quadrants
Show that t...
Question
Show that
t
a
n
−
1
1
3
+
t
a
n
−
1
1
5
=
1
2
c
o
s
−
1
33
65
Open in App
Solution
To prove:-
tan
−
1
1
3
+
tan
−
1
1
5
=
1
2
cos
−
1
33
65
Proof:-
tan
−
1
1
3
+
tan
−
1
1
5
As we know that,
tan
−
1
x
+
tan
−
1
y
=
tan
−
1
(
x
+
y
1
−
x
y
)
Therefore,
tan
−
1
1
3
+
tan
−
1
1
5
=
1
2
cos
−
1
33
65
tan
−
1
⎛
⎜ ⎜ ⎜
⎝
1
3
+
1
5
1
−
1
3
⋅
1
5
⎞
⎟ ⎟ ⎟
⎠
=
1
2
cos
−
1
33
65
tan
−
1
⎛
⎜ ⎜ ⎜
⎝
5
+
3
15
15
−
1
15
⎞
⎟ ⎟ ⎟
⎠
=
1
2
cos
−
1
33
65
tan
−
1
(
8
14
)
=
1
2
cos
−
1
33
65
2
tan
−
1
(
4
7
)
=
cos
−
1
33
65
⇒
tan
−
1
⎛
⎜ ⎜ ⎜ ⎜
⎝
2
×
4
7
1
−
(
4
7
)
2
⎞
⎟ ⎟ ⎟ ⎟
⎠
=
cos
−
1
33
65
⇒
tan
−
1
⎛
⎜ ⎜ ⎜
⎝
8
7
49
−
16
49
⎞
⎟ ⎟ ⎟
⎠
=
cos
−
1
33
65
⇒
tan
−
1
56
33
=
cos
−
1
33
65
⇒
cos
−
1
33
65
=
cos
−
1
33
65
(
∵
tan
−
1
56
33
=
cos
−
1
33
65
)
L.H.S.
=
R.H.S.
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Prove that:
tan
−
1
1
4
+
tan
−
1
2
9
=
1
2
cos
−
1
3
5
.
Q.
Show that
tan
−
1
(
1
5
)
+
tan
−
1
(
1
7
)
+
tan
−
1
(
1
3
)
+
tan
−
1
(
1
8
)
=
π
4
.
Q.
Prove that
tan
−
1
(
1
√
3
tan
x
2
)
=
1
2
cos
−
1
(
1
+
2
cos
x
2
+
cos
x
)
Q.
Prove that
t
a
n
[
π
4
+
1
2
c
o
s
−
1
a
b
]
+
t
a
n
[
π
4
−
1
2
c
o
s
−
1
a
b
]
=
2
b
a
Q.
Evaluate
tan
[
1
2
cos
−
1
(
3
√
11
)
]
View More
Related Videos
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Explore more
Sign of Trigonometric Ratios in Different Quadrants
Standard XI Mathematics
Solve
Textbooks
Question Papers
Install app