wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that: tan1(1+x1x1+x+1x)=π412cos1x,12x1.

Open in App
Solution

L.H.S.

tan1(1+x1x1+x+1x)=π412cos1x


Put x=cos2θ

tan1(1+cos2θ1cos2θ1+cos2θ+1cos2θ)

tan1(1+2cos2θ111+2sin2θ1+2cos2θ1+11+2sin2θ)cos2θ=2cos2θ1

tan1(2cos2θ2sin2θ2cos2θ+2sin2θ)

tan1(2cosθ2sinθ2cosθ+2sinθ)

tan1(cosθsinθcosθ+sinθ)


On dividing numerator and denominator by cosθ

tan1⎜ ⎜ ⎜cosθsinθcosθcosθ+sinθcosθ⎟ ⎟ ⎟

tan1⎜ ⎜ ⎜cosθcosθsinθcosθcosθcosθ+sinθcosθ⎟ ⎟ ⎟

tan1(1tanθ1+tanθ)

tan1⎜ ⎜tanπ4tanθ1+tanπ4tanθ⎟ ⎟

tan1tan(π4θ)

π4θ

π412cos1x


Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon