L.H.S.
tan−1(√1+x−√1−x√1+x+√1−x)=π4−12cos−1x
Put x=cos2θ
tan−1(√1+cos2θ−√1−cos2θ√1+cos2θ+√1−cos2θ)
⇒tan−1(√1+2cos2θ−1−√1−1+2sin2θ√1+2cos2θ−1+√1−1+2sin2θ)∴cos2θ=2cos2θ−1
⇒tan−1(√2cos2θ−√2sin2θ√2cos2θ+√2sin2θ)
⇒tan−1(√2cosθ−√2sinθ√2cosθ+√2sinθ)
⇒tan−1(cosθ−sinθcosθ+sinθ)
On dividing numerator and denominator by cosθ
tan−1⎛⎜
⎜
⎜⎝cosθ−sinθcosθcosθ+sinθcosθ⎞⎟
⎟
⎟⎠
⇒tan−1⎛⎜ ⎜ ⎜⎝cosθcosθ−sinθcosθcosθcosθ+sinθcosθ⎞⎟ ⎟ ⎟⎠
⇒tan−1(1−tanθ1+tanθ)
⇒tan−1⎛⎜ ⎜⎝tanπ4−tanθ1+tanπ4tanθ⎞⎟ ⎟⎠
⇒tan−1tan(π4−θ)
⇒π4−θ
⇒π4−12cos−1x
Hence, this is the
answer.