Let θ=sin−134
We know that sin−1x=tan−1x√1−x2
Therefore, θ=sin−134=tan−134√(1−34)2
θ=tan−134√7√16
=tan−1(34×4√7)
θ=tan−13√7
tanθ=3√7
We know that tanx=2tanx21−tan2x2
tanθ=2tanθ21−tan2θ2=3√7
3−3tan2θ2=2√7tanθ2
tanθ2=−2√7±√28+366
tanθ2=−2√7±86=−√7±43
Since sinθ2 is acute, tanθ2 which is the R.H.S of the expression.
Since we started with substitution θ=sin−134 L.H.S = tan(12sin−134)=4−√73
tanθ2=4−√73, which is the L.H.S. of the expression.
Therefore, L.H.S = R.H.S.