Show that tan(12 sin−134)=4−√73 and justify why the other value 4+√73 is ignored?
We have tan(12 sin−134)=4−√73
∴ LHS=tan[12 sin−1(34)]
Let 12 sin−134=θ⇒ sin−134=2θ⇒ sin 2θ=34⇒ 2 tan θ1+tan2 θ=34⇒ 3+3tan2 θ=8tan θ⇒ 3tan2 θ−8tan θ+3=0Let tan θ=y∴ 3y2−8y+3=0⇒ y+8± √64−4×3×22×3=8± √286=2[4± √7]2.3⇒ tan θ =4± √73⇒ θ=tan−1[4± √73]{but tan 4+√73>1, since max[tan(12 sin−134)]=1}∴ LHS=tan (tan−1)(4−√73)=4−√73=RHSNote Since, π2≤ sin−134≤ π/2⇒ −π4≤ 12 sin−134≤ π/4∴ tan(−π4)≤ tan12(sin−134)≤ tanπ4⇒ −1≤ tan(12 sin−134)≤ 1