wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that tan(12 sin134)=473 and justify why the other value 4+73 is ignored?

Open in App
Solution

We have tan(12 sin134)=473

LHS=tan[12 sin1(34)]

Let 12 sin134=θ sin134=2θ sin 2θ=34 2 tan θ1+tan2 θ=34 3+3tan2 θ=8tan θ 3tan2 θ8tan θ+3=0Let tan θ=y 3y28y+3=0 y+8± 644×3×22×3=8± 286=2[4± 7]2.3 tan θ =4± 73 θ=tan1[4± 73]{but tan 4+73>1, since max[tan(12 sin134)]=1} LHS=tan (tan1)(473)=473=RHSNote Since, π2 sin134 π/2 π4 12 sin134 π/4 tan(π4) tan12(sin134) tanπ4 1 tan(12 sin134) 1


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon