wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that :
tan²A-tan²B=sin²A-sin²B/cos²A.cos²B

Open in App
Solution

Tan²x = sin²x/cos²x, and sin²x + cos²x = 1

tan²A - tan²B = sin²A/cos²A - sin²B/cos²B
= sin²A cos²B/cos²A cos²B - sin²B cos²A/cos²A cos²B
= sin²A(1-sin²B)/cos²A cos²B - sin²B(1-sin²A)/cos²A cos²B
= (sin²A - sin²Asin²B)/cos²A cos²B - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B) - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B - sin²B + sin²Asin²B)/cos²A cos²B
= (sin²A - sin²B)/cos²A cos²B
hope it helps

flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon