Show that tan48∘tan23∘tan42∘tan67∘=1
To prove: tan48∘tan23∘tan42∘tan67∘=1
LHS =tan48∘tan23∘tan42∘tan67∘
=tan(90−42)∘tan(90−67)∘tan42∘tan67∘
=cot42∘cot67∘tan42∘tan67∘ [∵tan(90∘−θ)=cotθ]
=1tan42∘1tan67∘tan42∘tan67∘
=(1)(1)
=1
= RHS
Hence, proved.