Asphereofradius(r)isgiven.
LetRandhbetheradiusandtheheightoftheconerespectivelyandthevolumeoftheconeisV=13πR²h
fromrightangleΔBCD,
BC2=r2−R2
h=r+BC
V=13πR2r+√(r2−R2)
=13πR2r+13πR2√(r2−R2)
now,
dVdR=23πRr+23πR√(r²−R²)+R²3∗(−2R)2√r²−R²
=23πRr+232/3√(r²−R²)−πR³3√(r²−R²)
=2/3πRr+2ΠR(r2−R2)−ΠR33√(r2−R2)
=2/3πRr+2ΠRr2−3ΠR33√(r2−R2)
now,dVdR=0
23πRr=3πR³−2πRr²3√(r²−R²
2r√(r²−R²)=3R²−2r²
nowonsquaringbothside,
4r²(r²−R²)=9R⁴+4r⁴−12R²r²
4r⁴−4r²R²−4r⁴+12r²R²=9R⁴
8r²R²=9R⁴
R²=8r²9
when,R²=8r²/9,
(2Πr2−9ΠR2)
therefore,volumeismaximumwhen
R²=8r²9
so,heightoftheconeh=r+√(r²−R²)
h=r+√r2−8r29
h=r+√r29
h=r+r3
h=4r/3
Hence,itcanbeseenthatthealtitudeoftherightcircularconeofmaximumvolumethatcanbeinscribedinasphereofradiusris4r3.