It is given that a sphere has a radius r.
Let, R be the radius of the cone and h be the height of the cone.
The volume of the cone will be,
V= 1 3 π R 2 h
In right angled triangle BCD,
BC= r 2 − R 2 h−r= r 2 − R 2 h=r+ r 2 − R 2
So, the volume is,
V= 1 3 π R 2 ( r+ r 2 − R 2 ) V= 1 3 π R 2 r+ 1 3 π R 2 r 2 − R 2
Differentiate volume with respect to R,
dV dR = 2 3 πRr+ 2 3 πR r 2 − R 2 + π R 2 3 × ( −2R ) 2 r 2 − R 2 = 2 3 πRr+ 2 3 πR r 2 − R 2 − π R 3 3 r 2 − R 2 = 2 3 πRr+ 2πR( r 2 − R 2 )−π R 3 3 r 2 − R 2 = 2 3 πRr+ 2πR r 2 −3π R 3 3 r 2 − R 2
Put dV dR =0, then,
2 3 πRr+ 2πR r 2 −3π R 3 3 r 2 − R 2 =0 2 3 πRr= 3π R 3 −2πR r 2 3 r 2 − R 2 2r r 2 − R 2 =3 R 2 −2 r 2
Squaring both sides,
4 r 2 ( r 2 − R 2 )= ( 3 R 2 −2 r 2 ) 2 4 r 4 −4 r 2 R 2 =9 R 4 +4 r 4 −12 r 2 R 2 9 R 2 =8 r 2 R 2 = 8 r 2 9
Differentiate dV dR with respect to R,
d 2 V d R 2 = 2πr 3 + 3 r 2 − R 2 ( 2π r 2 −9π R 2 )−( 2πR r 2 −3π R 3 )( −6R ) 1 2 r 2 − R 2 9( r 2 − R 2 ) = 2πr 3 + 3 r 2 − R 2 ( 2π r 2 −9π R 2 )+( 2πR r 2 −3π R 3 )( 3R ) 1 r 2 − R 2 9( r 2 − R 2 )
When R 2 = 8 r 2 9 , then d 2 V d R 2 <0.
So, the volume is maximum when R 2 = 8 r 2 9 .
The height of the cone will be,
h=r+ r 2 − 8 r 2 9 =r+ r 2 9 =r+ r 3 = 4r 3
Hence, it is proved that the altitude of the right circular cone of the maximum volume that can be inscribed in a sphere of radius r is 4r 3 .