S1→x2+y2=a2 ...(i)
S2→x2+y2−ax−ay=0 ...(ii)
Form equation (i)
y=√a2−x2
Hence
x2+(a2−x2)−ax−a(√a2−x2)=0
a2−ax−a(√a2−x2)=0
a−x−(√a2−x2)=0
(a−x)=√a2−x2=0
(a−x)−√(a−x)(a+x)=0
√a−x(√a−x−√a+x)=0
a=x or (√a−x−(√a+x)=0
a−x=a+x or x=0
Therefore, x1=a and x2=0. Similarly y1=0 and y2=a.
Thus the points of intersection as
(a,0) and (0,a).
Now the slope of the tangent of S1 at (0,a)
2x+2yy′=0
y′=−xy
y′x=(0,a)=0=m1.
Now the slope of the tangent of S2 at (0,a)
2x+2yy′−a−ay′=0
y′(2y−a)=a−2x
y′=−(2x−a)(2y−a)
y′x=(0,a)=1=m2.
Hence angle between the circles at (0,a) is
tanθ=m1−m21+m1.m2
=0−11+(0×1)
=−1.
tanθ=−1 or θ=3π4.