xy=c2⇒y=c2xdydx=−c2x2Slopeofthetangentat(x,y)=−c2x2=−y1x1Theequationofthetangentat(x1,y1)onthecurveisy1=−y1x1(x−x1)or,yx1+y1x=2x1,y1=2c2Thepointsofintersectionofthetangentwiththeaxesare(2c2y1,0)and(0,2c2x)Themidpointofthisinterceptisat(2c22y1,2c22x1)orat(x1,y1)Areaofthetriangleformedbytheportionofthetangentbetweentheaxesandthecoordinatesaxesequals12(2c2x)(2c2y1)=2c2=aconstant.