AR,BR,CP and DP are the bisectors of angles ∠A,∠B,∠C and ∠D respectively.
The bisectors AR,BR,CP and DP formed a quadrilateral PQRS.
To prove: PQRS is a parallelogram.
Proof:
⇒∠A+∠B=180∘
⇒∠A+∠B2=180∘2
⇒∠A+∠B2=90∘
⇒∠A2+∠B2=90∘
Now, In ΔARB,
∠A2+∠B2+∠ARB=180∘ [Since, angle sum property of a triangle]
⇒90∘+∠ARB=180∘
⇒∠ARB=180∘−90∘
⇒∠ARB=90∘ ---(1)
Similarly,
∠C+∠D=180∘
⇒∠C+∠D2=90∘
⇒∠C2+∠D2=90∘
In ΔCPD,
⇒∠C2+∠D2+∠CPD=180∘
⇒90∘+∠CPD=180∘
⇒∠CPD=180∘−90∘
⇒∠CPD=90∘ ---(2)
Now,
∠A+∠D=180∘
⇒∠A+∠D2=90∘
⇒∠A2+∠D2=90∘
In ΔASD
⇒∠A2+∠D2+∠ASD=180∘
⇒90∘+∠ASD=180∘
⇒∠ASD=180∘−90∘
⇒∠ASD=90∘
⇒∠RSP=∠ASD=90∘ [Since, vertically opposite angles] ---(3)
In Quadrilateral PQRS,
∠P+∠S+∠R+∠Q=360∘
⇒90∘+90∘+90∘+∠Q=360∘
⇒270∘+∠Q=360∘
⇒∠Q=360∘−270∘
⇒∠Q=90∘ ---(4)
From (1), (2), (3) and (4),
In Quadrilateral PQRS,
∠P=∠Q=∠R=∠S=90∘
⇒ PQRS is a rectangle.
Hence, proved.