Given: arg(z−1z+1)=π4
Let z=x+iy
Now,
z–1z+1=x+iy−1x+iy+1
⇒z–1z+1=(x−1)+iy(x+1)+iy
⇒z–1z+1=(x−1)+iy(x+1)+iy×(x+1)−iy(x+1)−iy
⇒z–1z+1
=(x−1)(x+1)+iy[x+1−(x−1)]−(iy)2(x+1)2−(iy)2
=x2−1+y2+i(2y)(x+1)2+y2 [∵ i2=−1]
We know,
arg(z−1z+1)=π4
⇒tan−12y(x+1)2+y2x2+y2−1(x+1)2+y2=π4
⇒ tan−12yx2+y2−1=π4
⇒2yx2+y2−1=1
⇒2y=x2+y2−1
∴x2+y2−2y−1=0
Hence, the complex number z lies on the curve x2+y2−2y−1=0 which is a circle.