Show that the coordinates of the centroid of the triangle with vertices A(x1, y1, z1), B(x2, y2, z2) and C(x3, y3, z3) is (x1+x2+x33, y1+y2+y33, z1+z2+z33).
Let D be the mid - point of BC.
Then, coordinates of D are
(x2+x32, y2+y32, z2+z32)
Let G be the centroid of ΔABC, then G divides AD in the ratio 2 : 1.
So, coordinates of G are
⎡⎢⎣1.x1+2(x2+x32)1+2, 1.y1+2(y2+y32)1+2, 1.z1+2(z2+z32)1+2⎤⎥⎦
i. e. (x1+x2+x33, y1+y2+y33, z1+z2+z33)
Hence proved.