Given equation, x3+ax2+bx+ab=0 ....(1)
Roots of the required equation are cubes of the roots of given equation.
Therefore, y=x3⇒x=3√y
Substituting value of x in (1), we get
(3√y)3+a(3√y)2+b(3√y)+ab=0
⇒a3√y2+b3√y=−(y+ab) ....(2)
⇒a3y2+b3y+3aby(a3√y2+b3√y)=−(a3b2+3a2b2y+3aby2+y3)[Taking cubes on both sides]
⇒a3y2+b3y+3aby(−y−ab)=−(a3b2+3a2b2y+3aby2+y3)[Using (2)]
⇒y3+a3y2+b3y+a3b3=0
Hence, proved.