Equation of curve⇒√x2+y2=Ce±tan−1(yx).
Now taking log on both the sides, we get
12log(x2+y2)=logC±tan−1(yx)
Differentiating on both sides, we get
2x+2ydydx2(x2+y2)=±x2x2+y2×(xdydx−y)x2
x+ydydx=±(xdydx−y)
Now using positive sign,
x+ydydx=xdydx−y
dydx=−y−xy−x=x+yx−y
dydx=−y−xy−x=x+yx−y
Now using negative sign,
x+ydydx=−xdydx−y
dydx=y−xy+x
dydx=y−xy+x
Taking dydx=x+yx−y
and let arbitrary point be(a,b)
dydx=a+ba−b=Slope of Tangent
Equation of line⇒(y−b)=(a+ba−b)(x−a)
ay−by−ab+b2=ax+bx−a2−ab
(a−b)y−(a+b)x+b2+a2=0
Comparing with Ax+Bx+C=0, we get
A=a−b,B=−(a+b),C=b2+a2
Distance from origin=C√A2+B2=b2+a2√2(a2+b2)=√a2+b22
Now slope of tangent=a+ba−b
Slope of normal⇒(y−b)=(b−ab+a)(x−a)
by+ay−b2−ab=bx−ax−ab+a2
(a+b)y+(a−b)x−(a2+b2)=0
Distance from origin=∣−(a2+b2)√(a+b)2+(a−b)2∣=√a2+b22
We can clearly see that Equation I=Equation II.