1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Continuity of Composite Functions
Show that the...
Question
Show that the derivative of the function f given by
f
x
=
2
x
3
-
9
x
2
+
12
x
+
9
, at x = 1 and x = 2 are equal.
Open in App
Solution
Given:
f
(
x
)
=
2
x
3
-
9
x
2
+
12
x
+
9
Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of
f
at
x
is given by:
f
'
(
x
)
=
lim
h
→
0
f
(
x
+
h
-
f
(
x
)
h
⇒
f
'
(
x
)
=
lim
h
→
0
2
(
x
+
h
)
3
-
9
(
x
+
h
)
2
+
12
(
x
+
h
)
+
9
-
2
x
3
+
9
x
2
-
12
x
-
9
h
⇒
f
'
(
x
)
=
lim
h
→
0
2
x
3
+
2
h
3
+
6
x
2
h
+
6
x
h
2
-
9
x
2
-
9
h
2
-
18
x
h
+
12
x
+
12
h
+
9
-
2
x
3
+
9
x
2
-
12
x
-
9
h
⇒
f
'
(
x
)
=
lim
h
→
0
2
h
3
+
6
x
2
h
+
6
x
h
2
-
9
h
2
-
18
x
h
+
12
h
h
⇒
f
'
(
x
)
=
lim
h
→
0
h
(
h
2
+
6
x
2
+
6
x
h
-
9
h
-
18
x
+
12
)
h
⇒
f
'
(
x
)
=
6
x
2
-
18
x
+
12
So,
f
'
(
1
)
=
6
x
2
-
3
x
+
2
=
6
×
(
1
-
3
+
2
)
=
0
f
'
(
2
)
=
6
x
2
-
3
x
+
2
=
6
×
(
4
-
6
+
2
)
=
0
Hence the derivative at
x
=
1
and
x
=
2
are equal.
Suggest Corrections
0
Similar questions
Q.
Function f(x) = 2x
3
− 9x
2
+ 12x + 29 is monotonically decreasing when
(a) x < 2
(b) x > 2
(c) x > 3
(d) 1 < x < 2
Q.
For which interval the given function
f
(
x
)
=
−
2
x
3
−
9
x
2
−
12
x
+
1
is decreasing?
Q.
The maximum of
f
(
x
)
=
2
x
3
−
9
x
2
+
12
x
+
4
occurs at
x
=
Q.
Assertion (A): The function
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
8
has minimum value -12 at x = 2
Reason (R): For the fucntion
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
8
,
f
′
(
2
)
=
0
and
f
′′
(
2
)
>
0
Q.
Find the intervals in which the following functions are increasing or decreasing.
(i) f(x) = 10 − 6x − 2x
2
(ii) f(x) = x
2
+ 2x − 5
(iii) f(x) = 6 − 9x − x
2
(iv) f(x) = 2x
3
− 12x
2
+ 18x + 15
(v) f(x) = 5 + 36x + 3x
2
− 2x
3
(vi) f(x) = 8 + 36x + 3x
2
− 2x
3
(vii) f(x) = 5x
3
− 15x
2
− 120x + 3
(viii) f(x) = x
3
− 6x
2
− 36x + 2
(ix) f(x) = 2x
3
− 15x
2
+ 36x + 1
(x) f(x) = 2x
3
+ 9x
2
+ 12x + 20
(xi) f(x) = 2x
3
− 9x
2
+ 12x − 5
(xii) f(x) = 6 + 12x + 3x
2
− 2x
3
(xiii) f(x) = 2x
3
− 24x + 107
(xiv) f(x) = −2x
3
− 9x
2
− 12x + 1
(xv) f(x) = (x − 1) (x − 2)
2
(xvi) f(x) = x
3
− 12x
2
+ 36x + 17
(xvii) f(x) = 2x
3
− 24x + 7
(xviii)
f
x
=
3
10
x
4
-
4
5
x
3
-
3
x
2
+
36
5
x
+
11
(xix) f(x) = x
4
− 4x
(xx)
f
x
=
x
4
4
+
2
3
x
3
-
5
2
x
2
-
6
x
+
7
(xxi) f(x) = x
4
− 4x
3
+ 4x
2
+ 15
(xxii) f(x) = 5x
3
/2
− 3x
5
/2
, x > 0
(xxiii) f(x) = x
8
+ 6x
2
(xxiv) f(x) = x
3
− 6x
2
+ 9x + 15
(xxv)
f
x
=
x
(
x
-
2
)
2