10
You visited us
10
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Continuity of Composite Functions
Show that the...
Question
Show that the derivative of the function f given by
f
x
=
2
x
3
-
9
x
2
+
12
x
+
9
, at x = 1 and x = 2 are equal.
Open in App
Solution
Given:
f
(
x
)
=
2
x
3
-
9
x
2
+
12
x
+
9
Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of
f
at
x
is given by:
f
'
(
x
)
=
lim
h
→
0
f
(
x
+
h
-
f
(
x
)
h
⇒
f
'
(
x
)
=
lim
h
→
0
2
(
x
+
h
)
3
-
9
(
x
+
h
)
2
+
12
(
x
+
h
)
+
9
-
2
x
3
+
9
x
2
-
12
x
-
9
h
⇒
f
'
(
x
)
=
lim
h
→
0
2
x
3
+
2
h
3
+
6
x
2
h
+
6
x
h
2
-
9
x
2
-
9
h
2
-
18
x
h
+
12
x
+
12
h
+
9
-
2
x
3
+
9
x
2
-
12
x
-
9
h
⇒
f
'
(
x
)
=
lim
h
→
0
2
h
3
+
6
x
2
h
+
6
x
h
2
-
9
h
2
-
18
x
h
+
12
h
h
⇒
f
'
(
x
)
=
lim
h
→
0
h
(
h
2
+
6
x
2
+
6
x
h
-
9
h
-
18
x
+
12
)
h
⇒
f
'
(
x
)
=
6
x
2
-
18
x
+
12
So,
f
'
(
1
)
=
6
x
2
-
3
x
+
2
=
6
×
(
1
-
3
+
2
)
=
0
f
'
(
2
)
=
6
x
2
-
3
x
+
2
=
6
×
(
4
-
6
+
2
)
=
0
Hence the derivative at
x
=
1
and
x
=
2
are equal.
Suggest Corrections
0
Similar questions
Q.
Function f(x) = 2x
3
− 9x
2
+ 12x + 29 is monotonically decreasing when
(a) x < 2
(b) x > 2
(c) x > 3
(d) 1 < x < 2
Q.
For which interval the given function
f
(
x
)
=
−
2
x
3
−
9
x
2
−
12
x
+
1
is decreasing?
Q.
The maximum of
f
(
x
)
=
2
x
3
−
9
x
2
+
12
x
+
4
occurs at
x
=
Q.
Assertion (A): The function
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
8
has minimum value -12 at x = 2
Reason (R): For the fucntion
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
8
,
f
′
(
2
)
=
0
and
f
′′
(
2
)
>
0
Q.
Find the intervals in which the following functions are increasing or decreasing.
(i) f(x) = 10 − 6x − 2x
2
(ii) f(x) = x
2
+ 2x − 5
(iii) f(x) = 6 − 9x − x
2
(iv) f(x) = 2x
3
− 12x
2
+ 18x + 15
(v) f(x) = 5 + 36x + 3x
2
− 2x
3
(vi) f(x) = 8 + 36x + 3x
2
− 2x
3
(vii) f(x) = 5x
3
− 15x
2
− 120x + 3
(viii) f(x) = x
3
− 6x
2
− 36x + 2
(ix) f(x) = 2x
3
− 15x
2
+ 36x + 1
(x) f(x) = 2x
3
+ 9x
2
+ 12x + 20
(xi) f(x) = 2x
3
− 9x
2
+ 12x − 5
(xii) f(x) = 6 + 12x + 3x
2
− 2x
3
(xiii) f(x) = 2x
3
− 24x + 107
(xiv) f(x) = −2x
3
− 9x
2
− 12x + 1
(xv) f(x) = (x − 1) (x − 2)
2
(xvi) f(x) = x
3
− 12x
2
+ 36x + 17
(xvii) f(x) = 2x
3
− 24x + 7
(xviii)
f
x
=
3
10
x
4
-
4
5
x
3
-
3
x
2
+
36
5
x
+
11
(xix) f(x) = x
4
− 4x
(xx)
f
x
=
x
4
4
+
2
3
x
3
-
5
2
x
2
-
6
x
+
7
(xxi) f(x) = x
4
− 4x
3
+ 4x
2
+ 15
(xxii) f(x) = 5x
3
/2
− 3x
5
/2
, x > 0
(xxiii) f(x) = x
8
+ 6x
2
(xxiv) f(x) = x
3
− 6x
2
+ 9x + 15
(xxv)
f
x
=
x
(
x
-
2
)
2