Show that the diagonals of the parallelogram whose sides are lx+my+n=0, lx+my+n′=0, mx+ly+n=0 and mx+lu+n′=0 include an angle π2
The given lines are
lx+my+n=0……(i)
mx+ly+n′=0……(ii)
lx+my+n′=0……(iii)
mx+ly+n=0……(iv)
Solving (i) and (ii), we get
B=(mn′−lnl2−m2,mn−ln′l2−m2)
Solving (ii) and (iii), we get
C=(mn−ln′l2−m2,mn′−lnl2−m2)
Solving (i) and (iv), we get
A=(−nm+l,−nm+l)
Let m1 and m2 be the slope of AC and BD
m1=−n′m+l+nm+l−n′m+l+nm+l=1
and m2=−mn′−lnl2−m2−mn−ln′l2−m2mn′−ln−mn+ln′mn−ln′−mn+ln=−1
∴m1m2=−1
Hence, diagonals of the parallelogram intersect at an angle π2.