We have [xsin2(yx)−y]dx+xdy=0
=dydx=−1x[xsin2(yx)−y]=f(x,y) ---- (1)
Put x=kx,y=ky in equation (1),
f(kx,ky)=(−1kx[kxsin2(kykx)−ky])=k0(−1x[xsin2(yx−y)])=kof(x,y)
So it is clear that the given equation is homogenous differential equtaion of degree 0.
Now, let y=vx in (1),then
dydx=v+xdvdx
Therefore, v+xdvdx=−1x[xsin2(vxx−vx)]⇒v+xdvdx=−sin2v+v
⇒−∫cosec 2vdv=∫dxx
⇒cotv=log|x|+c
⇒cot(yx)=log|x|+C
Since given that y=π4 when x = 1, so, cotπ4=log|x|+C
⇒c=1
The required solution is cot(yx)=log|x|+1