Given differential equation:
⎛⎜⎝1+exy⎞⎟⎠dx+exy(1−xy)dy=0
dxdy=−exy(1−xy)1+exy
If F(λx,λy)=λF(x,y), then the differential
equation is homogeneous.
Now,
Substituting F(x,y)=−exy(1−xy)1+exy,
F(λx,λy)=−eλxλy(1−λxλy)1+eλxλy
F(λx,λy)=−e(xy)(1−xy)1+exy=F(x,y)
Hence, the differential equation is
homogeneous.
Given differential equation :
⎛⎜⎝1+exy⎞⎟⎠dx+exy(1−xy)dy=0
dxdy=−e(xy)(1−xy)1+exy ...(i)
Let x=vy
Differentiate both sides w.r.t. ′y′, we get
dxdy=d(vy)dy
Using product rule : (uv)′=u′v+uv′
dxdy=y.dvdy+vdydy
dxdy=y.dvdy+v
Substituting the value of dxdy and x=vy
in (i), we get
v+ydvdy=−ev(1−v)1+ev
ydvdy=−ev(1−v)1+ev−v
ydvdy=−ev+vev−v(1+ev)1+ev
ydvdy=−ev+vev−v−vev1+ev
ydvdy=−(ev+v)1+ev
1+evv+evdv=−dyy
Integrating both sides, we get
∫1+evv+evdv=∫−dyy
∫1+evv+evdv=−log|y|+logc ...(ii)
Substituting v+ev=t,
(1+ev)dv=dt
Substituting in (ii),
∫dtt=−log|y|+logc
log|t|=−log|y|+logc
Substituting t=v+ev, we get
log|v+ev|=−log|y|+logc
log|v+ev|+log|y|=logc
log((v+ev).y)=logc
(∵loga+logb=logab)
Substituting v=xy, we get
log⎛⎜⎝xy×y+exyy⎞⎟⎠=logc
x+yexy=c
Hence, the required general solution is
x+yexy=c