Given differential equation:
x2dydx=x2−2y2+xy
dydx=x2−2y2+xyx2
dydx=1−2y2x2+yx
If F(λx,λy)=λF(x,y), then the differential equation is homogeneous.
Substituting F(x,y)=1−2y2x2+yx,
Now,
F(λx,λy)=1−2(λy)2(λx)2+λyλx
F(λx,λy)=1−2λ2y2λ2x2+yx
F(λx,λy)=1−2y2x2+yx=F(x,y)
Hence, the differential equation is homogeneous.
Given differential equation:
x2dydx=x2−2y2+xy
dydx=1−2y2x2+yx ...(i)
Let y=vx
Differentiating both sides w.r.t ′x′, we get
dydx=d(vx)dx
Using product rule : (uv)′=u′v+uv′
dydx=dvdxx+vdxdx
dydx=dvdxx+v
Substituting the value of dydx and y=vx in (i),
we get,
xdvdx+v=1−2(vx)2x2+vxx
xdvdx+v=1−2v2x2x2+v
xdvdx=1−2v2
dv1−2v2=dxx
Integrating both sides, we get
∫dv1−2v2=∫dxx
12∫dv12−v2=∫dxx
12∫dv(1√2)2−v2=∫dxx
12×12(1√2)log∣∣
∣
∣
∣∣1√2+v1√2−v∣∣
∣
∣
∣∣=log|x|+c
√24log∣∣∣1+√2v1−√2v∣∣∣=log|x|+c
Substituting v=yx,
12√2log∣∣
∣
∣∣1+√2yx1−√2yx∣∣
∣
∣∣=log|x|+c
12√2log∣∣∣x+√2yx−√2y∣∣∣=log|x|+c
Hence, the required general solution is
12√2log∣∣∣x+√2yx−√2y∣∣∣=log|x|+c