Given differential equation :
(x2+xy)dy = (x2+y2)dx
dydx=x2+y2x2+xy
If F(λx,λy)=λF(x,y), then the
differential equation is homogeneous.
Substituting F(x,y)=x2+y2x2+xy
Now,
F(λx,λy)=(λx)2+(λy)2(λx)2+λx.λy
F(λx,λy)=λ2x2+λ2y2λ2x2+λ2xy
F(λx,λy)=λ2(x2y2)λ2(x2+xy)
F(λx,λy)=x2y2x2+xy=F(x,y)
Hence, the differential equation is homogeneous.
Given differential equation is
(x2+xy) dy=(x2+y2) dx
dydx=x2y2x2+xy ...(i)
Let y = vx
differentiate both sides w.r.t ′x′, we get
dydx=d(vx)dx
Using product rule :(uv)′ = u′v +uv′
dydx=dvdxx+vdxdx
dydx=dvdxx+v
Substituting the value of dydx and y=vx in (i),we get
xdvdx+v=x2+(vx)2x2+x(vx)
xdvdx+v=x2(1+v2)x2(1+v)
xdvdx=1+v21+v−v
xdvdx=1+v2−v−v21+v
xdvdx=1−v1+v
(1+v)(v−1)dv= −dxx
Integrating both sides, we get
∫(1+v)(v−1)dv=∫−dxx
∫(1+v)(v−1)dv=−log|x|+c
I=−log|x|+c ...(ii)
I=∫(1+v)(v−1)dv
I=∫(v−1+2v−1)dv
I=∫(v−1v−1+2v−1)dv
I=∫dv+∫2v−1dv
I=v+2log|v−1|
Substitutingv=yx,weget
I=yx+2log∣∣yx−1∣∣
I=yx+2log∣∣∣y−xx∣∣∣
Substituting the value of I in (ii), we get
yx+2log∣∣∣y−xx∣∣∣=−log|x|+c
yx+log∣∣∣(y−x)2x2∣∣∣+log|x|=c
(∵nlog b=log bn)
yx+log∣∣∣(y−x)2x2×x∣∣∣=c
(∵log a+log b=log ab)
log∣∣∣(y−x)2x∣∣∣=c−yx
(y−x)2x=ecyx
(y−x)2x=ec×eyx
Substituting ec=k
(y−x)2x=keyx
(x−y)2=kxeyx
Hence, the required general solution is
(x−y2)=kxeyx