wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the differential equation (x2+xy)dy=(x2+y2)dx is homogeneous and solve it.


Open in App
Solution

Given differential equation :

(x2+xy)dy = (x2+y2)dx

dydx=x2+y2x2+xy

If F(λx,λy)=λF(x,y), then the
differential equation is homogeneous.

Substituting F(x,y)=x2+y2x2+xy
Now,

F(λx,λy)=(λx)2+(λy)2(λx)2+λx.λy

F(λx,λy)=λ2x2+λ2y2λ2x2+λ2xy

F(λx,λy)=λ2(x2y2)λ2(x2+xy)

F(λx,λy)=x2y2x2+xy=F(x,y)

Hence, the differential equation is homogeneous.

Given differential equation is

(x2+xy) dy=(x2+y2) dx

dydx=x2y2x2+xy ...(i)

Let y = vx

differentiate both sides w.r.t x, we get

dydx=d(vx)dx

Using product rule :(uv) = uv +uv

dydx=dvdxx+vdxdx

dydx=dvdxx+v

Substituting the value of dydx and y=vx in (i),we get

xdvdx+v=x2+(vx)2x2+x(vx)

xdvdx+v=x2(1+v2)x2(1+v)

xdvdx=1+v21+vv

xdvdx=1+v2vv21+v

xdvdx=1v1+v

(1+v)(v1)dv= dxx

Integrating both sides, we get

(1+v)(v1)dv=dxx

(1+v)(v1)dv=log|x|+c

I=log|x|+c ...(ii)

I=(1+v)(v1)dv

I=(v1+2v1)dv

I=(v1v1+2v1)dv

I=dv+2v1dv

I=v+2log|v1|

Substitutingv=yx,weget

I=yx+2logyx1

I=yx+2logyxx

Substituting the value of I in (ii), we get

yx+2logyxx=log|x|+c

yx+log(yx)2x2+log|x|=c

(nlog b=log bn)

yx+log(yx)2x2×x=c

(log a+log b=log ab)

log(yx)2x=cyx

(yx)2x=ecyx

(yx)2x=ec×eyx

Substituting ec=k

(yx)2x=keyx

(xy)2=kxeyx

Hence, the required general solution is

(xy2)=kxeyx

flag
Suggest Corrections
thumbs-up
24
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon