Given differential equation is
(x2−y2)dx+2xydy=0
dydx=y2−x22xy
If F(λx,λy)=λF(x,y), then the
differential equation is homogeneous.
Put
F(x,y)=y2−x22xy,
Now,
F(λx,λy)=(λy)2−(λx)22λx.λy
F(λx,λy)=λ2(y2−x2)λ2.2xy
F(λx,λy)=y2−x22xy=F(x,y)
Hence, the differential equation is homogeneous.
Given differential equation is
(x2−y2)dx+2xydy=0
dydx=y2−x22xy ...(i)
Let y=vx
Differentiating both sides w.r.t. ′x′, we get
dydx=d(vx)dx
Using product rule : (uv)′=u′v+uv′
dydx=dvdxx+vdxdx
dydx=dvdxx+v
Substituting the value of dydx and y=vx
in (i), we get
xdvdx+v=(xv)2−x22x(xv)
xdvdx+v=x2v2−x22x2v
xdvdx=x2v2−x22x2v−v
xdvdx=x2v2−x2−2x2v22x2v
xdvdx=−x2v2−x22x2v
dvdx=−1x(v2+12v)
2vdvv2+1=−dxx
Integrating both sides, we get
∫2vv2+1dv=∫−dxx ...(ii)
I=∫2vdv1+v2 ...(iii)
Substituting t=1+v2,
Differentiating both sides w.r.t. v, we get
ddv(1+v2)=dtdv
2v=dtdv
Substituting dv=dt2v in (iii), we get
I=∫2vdv1+v2
I=∫dtt
I=log|t|+logc
Substituting t=1+v2,
I=log∣∣1+v2∣∣+logc
Substituting in (ii), we get
log∣∣1+v2∣∣=−log|x|+logc
log∣∣1+v2∣∣+log|x|=logc
log∣∣x(v2+1)∣∣=logc
(∵logab=loga+logb)
Substituting v=yx
log∣∣∣[(yx)2+1]x∣∣∣=logc
log∣∣∣y2+x2x∣∣∣=logc
y2+x2=cx
Hence, the required general solution is
y2+x2=cx