Given: x.cos(yx)dydx = y.cos(yx) + x
dydx=ycos(yx)+xxcos(yx)
If F (λx,λy)=λF(x,y),
then the differential equation is homogeneous .
Substituting F(x,y)=ycos(yx)+xxcos(yx)
Now,
F(λx,λy)=(λy)cos(λyλx)+λx(λy).cos(λyλx)
F(λx,λy)=λycos(yx)+λxλycos(yx)
F(λx,λy=λ(y cos(yx)+x)λ x cos(yx)
F(λx,λy)= ycos(yx)+xxcos(yx)=F(x,y)
Hence,the differential equation is homogeneous.
Given differential equation is
x.cos(yx)dydx=y.cos(yx)+x
dydx=ycos(yx)+xxcos(yx) ...(i)
Lety=vx
Differentiating both sides w.r.t. 'x'.
dydx=d(vx)dx
Using product rule : (uv)′=u′v+uv′
dydx=dvdxx+vdxdx
dydx=dvdxx+v
Substituting value of dydxand y=vx in (i),
dvdxx+v=(vx)cos(vxx)+xxcos(vxx)
dvdxx+v=x(vcos v+1)xcos v
dvdxx+v=v cos v+1x cos v
dvdxx=v cos v+1cos v−v
dvdxx=v cos v+1−v cos vcos v
dvdxx=1cos v
cos vdv=dxx
Integrating both sides, we get
∫cos v dv=∫ dxx
sin v=log|x|+log|c|
Substituting v=yx,we get
sinyx=log|x|+log|c|
sinyx=log|cx| (∵log +log b=log ab)
∴ The required general solution is
sinyx=log|cx|