xdydxsinyx=ysinyx−x
dydx=yx−1sinyx
Let F(x,y)=yx−1sinyx
Therefore, F(λx,λy)=λyλx−1sinλyλx
=λo⎛⎜
⎜⎝yx−1sinyx⎞⎟
⎟⎠
=λoF(x,y)
Given differential equation is homogeneous
Let y=vx
dydx=v+xdvdx
Now, x(v+xdvdxsinv+x−vx×sinv)=0
vxsinv+x2sinvdvdx+x−vxsinv=0
∫sinvdv=−∫dxx
−cosv=−log|x|+c
−cos(yx)=−log|x|+c
When x=0, y=π2
−cos⎛⎜
⎜⎝π20⎞⎟
⎟⎠=−log|0|+c
⇒c=0
cos(yx)=log|x|
x=ecos(yx)
Therefore, cos(yx)=log x