Given differential equation:
x dy−y dx=√x2+y2 dx
x dy=(√x2+y2+y)dx
dydx=√x2+y2+yx
If F(λx,λy)=λF(x,y), then the differential equation is homogeneous.
Substituting F(x,y)=√x2+y2+yx
Now,
F(λx,λy)=√(λx)2+(λy)2+λyλx
F(λx,λy)=√λ2x2+λ2y2+λyλx
F(λx,λy)=λ(√x2+y2+y)λx
F(λx,λy)=√x2+y2+yx=F(x,y)
Hence, the differential equation is homogeneous.
Given differential equation:
x dy−y dx=√x2+y2 dx
dydx=√x2+y2+yx ...(i)
Let y=vx
Differentiating both sides w.r.t. ′x′, we get
dydx=d(vx)dx
Using product rule : (uv)′=u′v+uv′
dydx=dvdxx+vdxdx
dydx=dvdxx+v
Substituting the value of dydx and y=vx
in (i), we get
xdvdx+v=√x2+(vx)2+(vx)x
xdvdx+v=√x2+x2v2+vxx
xdvdx+v=x√1+v2+vxx
xdvdx+v=√1+v2+v
xdvdx=√1+v2
dv√1+v2=dxx
Integrating both sides, we get
∫dv√12+v2=dxx
log∣∣v+√v2+1∣∣=log|x|+logc
log∣∣v+√v2+1∣∣=log|cx|
v+√v2+1=cx
Substituting v=yx,
yx+√(yx)2+1=cx
yx+√y2x2+1=cx
yx+√y2+x2x=cx
y+√y2+x2=cx2
Hence, the required general solution is
y+√y2+x2=cx2