wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the differential equation (xy)dydx=x+2y is homogeneous and solve it.

Open in App
Solution

Given: (xy)dydx=x+2y
dydx=(x2yxy)

If F(λx,λy)=λF(x,y),
then the differential equation is homogeneous.

SubstitutingF(x,y)=(x+2yxy)

Now,
F(λx,λy)=λx+2(λy)λxλy

F(λx,λy)=λ(x+2y)λ(xy)

F(λx,λy)=(x+2y)xy=F(x,y)

Hence,the differential equation is homogeneous.
Given differential equation is

(xy)dydx=x+2y

dydx=(x+2yxy) ...(i)

Let y=vx

Differentiating both sides W.r.t x
dydx=d(vx)dx

Using product rule :(uv)=uv + uv

dydx=dvdxx + vdxdx

dydx= dvdxx + v

Substituting the value of dydx and y =vx
in (i), we get

dvdx x + v=x+2vyxvx

dvdx x + v= x(1+2v)x(1v)

dvdx x =1+2v1v v

dvdx.x=1+2vv+v21v

dvdxx = (v2+v+1v1)

dv(v1v2+v+1)=dxx

Integrating both sides, we get

(v1)v2+v+1dv = dxx

(v1)v2+v+1dv = log|x|+c

(v+12)32(v + 12)2 + 34 dv = log|x| + c

(v+12)dv(v+12)2 +34 32 dv(v+12)2+34

= log|x| + c
I1 32 I2= log|x| + c ...(ii)

I1=(v+12)dv(v+12)2 + 34

Substituting (v+12)2 + 34 = t

Differetiating w.r.t. v, we get

d(((v+12)2 + 34)dv=dtdv

2(v+12)=dtdv

dv=dt2(v+12)

Substituting value of v and dv in I1,

I1=(v+12)t×dt2(v+12)

I1=12dtt

I1=12log|t|

Substituting t=(v+12)2+34inl1,

l1=12log(v+12)2+34

l1=12logv2+2v×12+14+34

l1=12log|v2+v+1|

I2=dv(v+11)2+34

l2=dv(v+12)2+(32)2

l2=132tan1(v+12)32

I2=23tan12(v+12)3

I2=23tan1(2v+13)

Substituting value ofl1and I2 in~(ii),

I132I2=log|x|+c

12log|v2+v+1|32×23tan1(2v+13)

=log|x|+c

Since,dy1+y2=tan1y+C)

12log|v2+v+1|3tan1(2v+13)

=log|x|+c

Replacingvbyyx,We get

=log|x|+c

12logy2x2+yx+1+log|x|

=3tan1(2y+x3x)+c

logy2x2+yx+1+2log|x|

=23 tan1(2y+x3x)+2c

Substituting 2c = C and

using(logab=loga+logb)

log[y2x2+yx+×|x2|]

=23tan1(2y+x3x)+C

logx2y2x2+x2yx+x2

=23tan1(x+2y3x)+C

log|x2+xy+y2|=23tan1(x+2y3x)+C

The required general solution is

log|x2+xy+y2|=23tan1(x+2y3x)+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon