Given: (x−y)dydx=x+2y
dydx=(x−2yx−y)
If F(λx,λy)=λF(x,y),
then the differential equation is homogeneous.
SubstitutingF(x,y)=(x+2yx−y)
Now,
F(λx,λy)=λx+2(λy)λx−λy
F(λx,λy)=λ(x+2y)λ(x−y)
F(λx,λy)=(x+2y)x−y=F(x,y)
Hence,the differential equation is homogeneous.
Given differential equation is
(x−y)dydx=x+2y
dydx=(x+2yx−y) ...(i)
Let y=vx
Differentiating both sides W.r.t′ x′
dydx=d(vx)dx
Using product rule :(uv)′=u′v + uv′
dydx=dvdxx + vdxdx
dydx= dvdxx + v
Substituting the value of dydx and y =vx
in (i), we get
dvdx x + v=x+2vyx−vx
dvdx x + v= x(1+2v)x(1−v)
dvdx x =1+2v1−v − v
dvdx.x=1+2v−v+v21−v
dvdxx = − (v2+v+1v−1)
dv(v−1v2+v+1)=−dxx
Integrating both sides, we get
∫ (v−1)v2+v+1dv = − ∫dxx
∫(v−1)v2+v+1dv = − log|x|+c
∫(v+12)−32(v + 12)2 + 34 dv = −log|x| + c
∫(v+12)dv(v+12)2 +34 − 32∫ dv(v+12)2+34
= −log|x| + c
I1 − 32 I2= −log|x| + c ...(ii)
I1=∫(v+12)dv(v+12)2 + 34
Substituting (v+12)2 + 34 = t
Differetiating w.r.t. v, we get
d(((v+12)2 + 34)dv=dtdv
2(v+12)=dtdv
dv=dt2(v+12)
Substituting value of v and dv in I1,
I1=∫(v+12)t×dt2(v+12)
I1=12∫dtt
I1=12log|t|
Substituting t=(v+12)2+34inl1,
l1=12log∣∣∣(v+12)2+34∣∣∣
l1=12log∣∣∣v2+2v×12+14+34∣∣∣
l1=12log|v2+v+1|
I2=∫dv(v+11)2+34
l2=∫dv(v+12)2+(√32)2
l2=1√32tan−1(v+12)√32
I2=2√3tan−12(v+12)√3
I2=2√3tan−1(2v+1√3)
Substituting value ofl1and I2 in~(ii),
I1−32I2=−log|x|+c
12log|v2+v+1|−32×2√3tan−1(2v+1√3)
=−log|x|+c
Since,∫dy1+y2=tan−1y+C)
12log|v2+v+1|−√3tan−1(2v+1√3)
=−log|x|+c
Replacingvbyyx,We get
=−log|x|+c
12log∣∣∣y2x2+yx+1∣∣∣+log|x|
=√3tan−1(2y+x√3x)+c
log∣∣∣y2x2+yx+1∣∣∣+2log|x|
=2√3 tan−1(2y+x√3x)+2c
Substituting 2c = C and
using(logab=loga+logb)
log[∣∣∣y2x2+yx+∣∣∣×|x2|]
=2√3tan−1(2y+x√3x)+C
log∣∣∣x2y2x2+x2yx+x2∣∣∣
=2√3tan−1(x+2y√3x)+C
log|x2+xy+y2|=2√3tan−1(x+2y√3x)+C
∴ The required general solution is
log|x2+xy+y2|=2√3tan−1(x+2y√3x)+C