Given differential equation:
(x−y)dy−(x+y)dx=0
dydx=x+yx−y
If F(λx,λy)=λF(x,y), then the
differential equation is homogeneous.
Put
F(x,y)=x+yx−y
Now,
F(λx,λy)=λx+λyλx−λy
F(λx,λy)=λ(x+y)λ(x−y)
F(λx,λy)=x+y(x−y)=F(x,y)
Hence, the differential equation is homogeneous.
Given differential equation is
(x−y)dy−(x+y)dx=0
dydx=x+yx−y...(i)
Let y=vx
Differentiating both sides w.r.t. ′x′, we get
dydx=d(vx)dx
Using product rule : (uv)′=u′v+uv′
dydx=dvdxx+vdxdx
dydx=dvdxx+v
Putting the value of
dydx
and y=vx in (i),then we get
xdvdx+v=x+xvx−xv
xdvdx+v=x(1+v)x(1−v)
xdvdx=(1+v)(1−v)−v
xdvdx=1+v−v+v21−v
xdvdx=1+v21−v
(1−v)dv1+v2=dxx
Integrating both sides, we get
∫(1−v1+v2)dv=∫dxx
∫□dv1+v2−∫vdv1+v2=∫dxx
tan−1v−∫vdv1+v2=log|x|+c
tan−1v−I=log|x|+c ...(i)
I=∫vdv1+v2 ...(ii)
Putting t=1+v2,
Differentiating both side w.r.t. v, we get,
ddv(1+v2)=dtdv
vdv=dt2
putting vdv=dt2 in (ii), then we get
I=∫vdv1+v2=∫dt2t
I=12log|t|+c
Putting t=1+v2,
I=12log∣∣1+v2∣∣+c
putting in (i), then we get,
tan−1v−12log∣∣1+v2∣∣=log|x|+c
tan−1v=12log∣∣1+v2∣∣+22log|x|+c
tan−1v=12log[∣∣1+v2∣∣.|x|2]+c
(loga+logb=logab)
Putting v=yx,
tan−1yx=12log[(1+(yx)2)× x2]+c
tan−1yx=12log[x2+y2]+c
Final answer:
Hence, the required general solution is
tan−1yx=12log[x2+y2]+c